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~~~~~~E Pe 
radius of drop ; 

Fez-= qt + x) 

concentration ; 
volume average concentration in drop ; Subscripts 
initial concentration in drop; 1, disperse phase ; 
concentration in flow core ; 27 continuous phase ; 

distribution coefficient 
=&; 

eq* equilibrium ~n~~tration. 

diffusion coefficient ; 
viscosity ratio ofdisperse to continuous 

IM’RODUCTION 
T HE WORKS on mass transfer to a moving drop 

phase=%; published before 1965 were reviewed in [l]. 
Heat transfer for interaction between a drop 

kinematic viscosity of medium ; and a flow was studied in [Z--4]. Recently a 
stream function ; number of works on experimental and theo- 
steady-state velocity of drop ; 
velocity of liquid at drop equator ; 

retical study of mass transfer have been pub- 

individual mass transfer coefficient ; 
lished [5-123. 

Without affecting the generality of the subject 
overall mass transfer coefficient ; all the subsequent discussion is presented in 
Reynolds number ; terms of mass transfer since the most compre- 
P6clCt number ; hensive experimental information is accumu- 
Fourier number ; lated in the field of liquid extraction. The shape 
individual Sherwood number; of drops is assumed close to spherical. 
overall Sherwood number ; Viscous flow around drops has been studied 
degree of saturation ; 
vohnnetric velocity of continuous 

by Radamard [13] and Rybczynski f14f for 
Re < 1 and by Hamielec and Johnson [15] for 

phase ; 1 < Re < 80. 
963 
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In the present paper the limiting cases of mass THE LIMITING CASE OF THE CONTROLLING 

transfer for controlling resistances in the con- RESISTANCE IN THE CONTINUOUS PHASE 

tinuous and disperse phases and the general The distribution of concentrations inside and 

case of comparable phase resistances for 0 < Re outside the drop is governed by the convective 

< 80 have been considered (though experiments diffusion equations 

were carried out even for larger Re numbers). hi aci O&&, 
t+v,,idr+rdB=Di 

HYDRODYNAMICS OF FLOW AROUND DROPS 

If the origin of the coordinate system is 
placed in the centre of the drop and the polar 

+ $& ij sin 8 2 
( 11 (i = 1,2). (7) 

axis is directed to meet the flow then, according 
to Hadamard and Rybczynski, for small values 

Since the diffusion coefficient for liquids is 

of Re (Re < 1) the expressions for the stream 
rather small (D = lo- 5 cm2/s) then, for the time 

functions inside and outside the drop in spherical 
of liquid flow around the drop, the diffusion 

coordinates are of the form 
front will move by a distance much less than the 
drop radius. Therefore it may be considered that 

Yi = -~u0p2(1 - p’) sin2 8 (1) a thin diffusional boundary layer exists on the 

X(1 - P2) y*+, --- 
[ 

outside drop surface and the mass transfer 
process is a steady-state one. 

P In the approximation of the diffusional 

- (2 + 3X) ~(1 - p) sin’ 0. 1 (2) boundary layer the last two terms in expression 
(7) for the Laplace operator is spherical co- 

According to Hamielec and Johnson [lS] at 
ordinates [16] may be neglected and the 
equation of convective diffusion for a steady- 

1 < Re < 80 the approximate expressions for state case assumes the form 
the stream functions are of the form 

Y, = (E,p2 + E,p4) sin’ 13 
ac2 a2c2 u,~~+:$= D,- 

ar2 . (8) 

+ (F,p2 + F,p4) sin2 13 cos 8 (3) 
For the case of all resistance in the continuous 

Y, =( 05p2 + T$)sin20 
phase equation (8) is solved with the boundary 
conditions 

k=l 

+( f: -)sin2Bc0sB 
kzl z 

c~(I, e) = c20 c2(r, e) = 2 

(4) 
r-00 r=R (9) 

The values of the coefficients E,, E,, F,, F,, A,, 
where ci is the constant volumetric concentra- 

A,, A,, A4, B,, B,, B,, B, were determined by 
tion inside the drop. 

Under the assumption that the thickness of 
the authors as functions of Re and X. 

The liquid velocity components are related to 
the diffusional layer is much smaller than the 

the stream function by the known expressions 
drop radius, equation (8) in Prandtl and Mizes 
variables is transformed to 

1 ayi 
vpi = 7-p 

p sin 8 ae 

l ayi 
utli = - p sin 0 ap 

ac, a%, (5) x = D2R- ‘(v&= i sin2 8 m (10) 

(6) 
The expressions for the stream functions, linear- 
ized with respect to p’ = p - 1, are of one and 
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the same form 

\;p, = -ueq pi sin2 8 

where u,~ is absolute value of the liquid velocity 
at the drop equator. 

For Re < 1, u,~ = uo. For 1 < Re < 80 the 
surface velocity of liquid at the equator is 
approximately dete~in~ by Baird and 
Hamielec [17] as 

u 
10 + 2A, 

t9 = 8+3X’ (12) 

The boundary conditions (9) in terms of the 
variables 8, I are transformed into 

For small Reynolds numbers equations (IO) and 
(11) with boundary conditions (13) were solved 
by Levich [16]. Levich’s solution is 

Sk2 = J[3,:, ;u)l JW2). (14) 

Equation (14) may be represented by 

Sh 2-4 (15) 

Since the expression for the stream function (11) 
is of the same form both for small and large Re, 
then equation (15) is also valid for the range of 
Reynolds numbers 1 < Re < 80. In the latter 
case the velocity of flow at the drop equator is 
determined by equation (12). By substituting the 
value of veq from (12) into equation (15) 

Equation (16) was obtained earlier by Baird and 
Hamielec [I71 in the solution of the external 
problem within the framework of the theory of 
diffusional boundary layers by a somewhat 
cumbersome method. 

THE LISTING CASE OF THE CONTROLLING 
RESISTANCE IN THE DISPERSE PHASE 

In the case of the total resistance being 
located in the disperse phase the dis~bution of 
the #n~ntratio~s of the extracted component 
is determined by the solution of the equations 
of convective diffusion (7) with the boundary 
conditions 

and initial condition 

For the first time the equation of convective 
diffusion for Re < 1 was solved by Kronig and 
Brink (18) on the assumption that the concentra- 
tion of the extracted component along a stream- 
line is constant. The authors substantiated the 
adopted assumptions by an est~ation aceord- 
ing to which the time of circulation along the 
streamline is much shorter than the time of 
relaxation of drop saturation by molecular 
diffusion. With the above assumptions the 
authors obtained the convection diffusion equa- 
tion in the form 

(19) 

where the curvilinear coordinate x = 4p2(1 - 
pz) sin2 8 coincides with the expressions for the 
stream function except for the constant factor. 
The coefficients P(x) and q(x) are functions of 
total elliptic integrals. 

Boundary conditions (17) in terms of variables 
x, t assume the form 

The solution of Kronig and Brink for the degree 
of saturation is of the form 

A(T) = 1 - 4 T B,exp(-16&r). (21) 
fl=l 
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Kronig and Brink calculated seven values of the 
coefficients B, and A, by the Ritz method. 

Later on equation (19) with boundary (20) 
and initial conditions (18) was computed on the 
electronic digital computer M-20 for a wide 
range of Fourier numbers from r = 10m4. The 
results of computations for A are presented in 
Table 1 of the Appendix to [l]. Table 4-2 in [l] 
represents the values of A calculated by equation 
(21) for n = 7. The comparison of calculations 
for z > 10e3 shows satisfactory agreement. 
However at z = l1 -4 the values of A calculated 
more accurately on the electronic digital com- 
puter were 2.6 times smaller than those given by 
equation (21). 

In [7, 81 the solution of [18] is criticized in 
connection with the fact that at large Pe 
numbers the basic assumptions of Kronig and 
Brink do not hold in a thin surface layer of a 
drop. At the same time, according to the 
authors’ of [7, 81 the main resistance to mass 
transfer in the drop is concentrated in a thin 
diffusional boundary layer of the drop. 

In this connection, to give more compre- 
hensive explanation of the Kronig and Brink 
model, application in [19] of the solution of the 
convective diffusion equation (7) is carried out 
under conditions (17) and (18) for the case when 
the Pe number is large enough. The solution is 
performed by the Bubnov-Galerkin method 
[20]. In the drop the concentration distribution 
is found in the form of the series 

The succession of approximating functions 
was chosen to satisfy the boundary conditions 
(17) and the steady-state convective diffusion 
equation in the first approximation. According 
to the Bubnov-Galerkin method the boundary- 
value problem is reduced to the system of 
ordinary differential equations in terms of the 
coefficients akr) 

I I I I I I 
0 2 3 4 5 

log (TXlO5) 

FIG. 1. Degree of saturation A against Fourier number. 
Solid curve, Kronig and Brink’s solution [18] ; dotted line, 

Brounshtein and Fishbein’s solution [ 191. 

36, 

2 

30 - 

log (Pe’) 

FIG. 2. Sh, number as function of Pe’ number at T > 03. 
1, Johns and Beckman’s solution [ll]; 2, Levich, et al. [7] 

and Ruckenstein’s [12] solutions for large Pe,. 

n 

dai 

dz+ c I& = 0 (i = 1,2,. . . , n) 

(23) 

with initial conditions 

ai = Pi. (24) 

For the degree of saturation the following ex- 
pression is found 

n 

A(z) = 1 - ; 
c 

&) B? (25) 
i= 1 
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The series (25) converges somewhat quicker than sponding to the values of P&l& numbers from 
the series (21) The numerical calculations have Pe’ = 0 {pure molecular diffusion) to Pe’ = 80 
been carried out for n = 5, Figure 1 represents converge into a single curve described, according 
the ~~&u~a~~~s by eqna~o~s (21) and (25). to Johns and Beckmann, by the equation 

The solution of equation (7) with conditions 
(17) and (18) for various PC&t numbers was 
obtained by Johnson and Beckman [II] on ark 
eIectronic digital &omputer. The ~omputat~o~a~ 
resuhs for large f(r > O=35) are presented in 
Fig. 2 (Curve 1). As follows from the graph the 
Sherwood number is practically independent of 
Pe’ at Pe’ > 100, The asymptotic value of Sh- 
obtained by Johns and Beckman (i.e. the value 
of Sh at farge Pe and r) is i79. The same value of 
Sh is asymptotic for the Kronig and Brink 
solution. Thus Kronig and Brink’s solution may 
be used for the calculation of heat and mass 
transfer into a spherical drop for the totai resis- 
tance present in the disperse phase if T 2 0.1 
Pe’ 9 1QO. At r < 0.1 the solution by Krunig 

i i i i 
I 

5. I 
005 o-w o.t5 0.20 om 

t 

FIG. 3. Sh, number as a function of I%urier number for 
various Pe,. Solid curves, Johns and Beckman’s solution; 
dotted line, solution of Kronig and Brink’s equations on 

electronic digital computer. 

may already be applied at P& % @IO. In Fig, 3 
the rest&s of cafcufations by Johns and Beckman 
show the dependence of the Sherwood number 
on the Fourier number at various PM& numbers 
The dashed curve corresponds to the accurate 
solution of equation (19) 5x3 an electronic 
digital computer a# the Comp~tatjon Centre 
of Leningrad University. 

For r < 0.015 the different curves corre- 

where 

Ct - = I - 3.38 Jr. 
Cl0 

(26) 

The dotted line which carresponds to the 
computer solution by Krouig and Brink satisfies 
equation (26) for z G fWQ. 

log ITX105i 
Fro. 4. Shl number as a function of z: at X r= Q2. 1: X J 42 ; 

Re<1;2:X=O;Re=8Q;J:X=:2;Re=8Q. 

For Reynolds numbers much greater than 
unity (1 < Re G 80) equation (7) with con- 
ditions (17) and (18) was solved with the use of 
the expression for the stream function (3) in 
121-j. The sot&ion for large 8% was carried out 
by the ~ub~ov~~rk~~ method. The calcula- 
tion resuhs are plotted in Fig. 4 for X = 0 and 
2 and in Fig. 5, for X = 10. As follows from 
the graphs for X G 2 and r > lo- 3 the Sherwood 
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ol 
2 3 4 

log (TX 105) 

FIG. 5. Sh, number as a function of 7 at X = 10. 1: Re < 1; 
2:Re=40;3:Re=80. 

number slightly depends on Re. However at 
X = 10 the value of Sh, for Re = 80 and 
r = 10m3 is rather greater than for Re < 1. 

COMPARABLE PHASE RESISTANCES 

The concentration change in the continuous 
phase in counter-flow for the case of comparable 
phase resistances is considered in [6], where 
equation (19) is solved approximately for bound- 
ary conditions corresponding to the averaged 
material balance in counter-flow of the ex- 
tracted component. The numerical values of A 
as a function of the Fourier number and para- 
meters tl = V,$/V,; /I = D,$/2K2R are in- 
cluded in [l]*. The time average overall 
Sherwood number for the disperse phase at 
c1 = 0 is related with the degree of extraction A 
by the expression 

a,, = - f ln (1 - A). (27) 

* In [l], Appendix 1, pp. 299-306; text, p. 115 ~7 = 
D,$/k,R should be substituted by /I = D,$/2k,R. 

The results of calculations for c( = 0 are plotted 
in Figs. 68. As follows from the graphs in Figs. 6 
and 7 the resistance of the disperse phase may be 
considered controlling at /? < 10e3 (the limiting 
case of the controlling resistance in the disperse 
phase is $ -+ 0 and p -+ 0, respectively). The 
value p + ccj (II/ + m) corresponds to the 
limiting case of the controlling resistance in the 
continuous phase. As follows from the data of 
Fig. 8 the continuous phase resistance is 
controlling up to r z 1 at /I > 1. Thus the 
range of /? values 10m3 < fl < 1 corresponds 
to the intermediate case of comparable phase 
resistances. 

As is known for the steady-state conditions 
of mass transfer the additivity equations [l] 
may be applied 

1 * 1 -= ;fk; -= 
KI 1 2 & 

;+-‘. 
2 tik, 

(28) 

Since for comparable phase resistances the mass 
transfer regime is non-steady only at r < 0.1 
(Fig. 7), then at z > 0.1 the additivity equation 
(28) may be used for the calculation of the overall 
mass transfer coefficient. At r < 0.1 the correc- 
tion for the additivity formula may be calculated 
by the equation 

(29) 

FIG. 6. Degree of saturation A against t at a = 0 and 
fi = o,1o-3,1o-z, lo-l, l. 
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220 

200 c 

log (rX105) 

FIG. 7. Sh, as a function of A at z = 0 and /3 = 0, 10-j, 
10-2, lo- 1, 1. 

where (K,), is the time-average mass transfer 
coefficient predicted by the additivity equation 

(28). 

THE SOLUTION OF THE INTERNAL PROBLEM 
BY USING THE APPROXIMATION OF A THIN 

DI~SION BOUNDARY LAYER 

In recently published works [7, 8, 121 the 
case of comparable phase resistances for Re < 1 
is considered on the assumption of the existence 
of a thin diffusional boundary layer both on the 
external and internal sides of the drop surface 
at large Pe numbers. 

Levich [16] arrives at the existence of a thin 
diffusional boundary layer at large Pe after 
considering the equation of convective diffusion, 
the dimensionless form of which is 

(PV) C = ; AC. (30) 

I o- 
09 /3:1 

06- 
p:lO-3 

O?- 

f;rG. 8. Sh, as a function oft at OL = 0 and p = 10m3, lo-‘, 
lo-‘, 1. 

At large Pe the left hand side of the equation 
in the flow core is zero. Hence Levich concludes 
that always VC = 0, i.e. C = const. However 
(FV) C = 0 not only at VC = 0 but also in the 
case when the concentration gradient is normal 
to the streamlines, This is the case found by 
Kronig and Brink for mass transfer to the drop 
with the resistance present only in the disperse 
phase. 

Since Johns and Beckmann [ll] obtained 
an exact solution of the convective diffusion 
equation (7) for the case of the controlling 
resistance in the disperse phase, this solution 
may be compared to those by Levich et al. [7] 
and Ruckenstein [12]. As the expressions for 
the stream function inside and outside the 
drop in the approximation of a thin diffusional 
boundary layer are of the same form (11) as the 
convective diffusion equation (10) and boundary 
conditions (13), then equation (14) in the form 

Shl = Jp(:+ _y)] 4%) (31) 

is the solution. Equation (31) may be obtained 
from general equations for comparable phase 
resistances cited in [7] and [12] as the limiting 
case. The comparison ofcalculations by equation 
(31) with the exact solution by Johns and Beck- 
man for z > O-15 (when the mass transfer 
process is steady) is presented in Fig. 2 (curve 2). 
For z < 0.15 the process of mass transfer is 
nonsteady according to the exact calculation, 
while Sh, determined by equation (31) does 
not depend on z. According to [8] the process 
in unsteady only at the very initial moment of 
formation of the diffusional boundary layer. 
The relaxation time for the boundary layer is 
small and equal to the ratio of drop diameter to 
its rising velocity. The Fourier number r = 4/Pe 
corresponds to the above condition. The authors 
of [7, 83 consider that the solution obtained is 
valid for the Fourier numbers 2, G z & zd, 
where zd is the Fourier number corresponding 
to the time in which the total amount of the 
substance dissolved in a drop decreases e times 
the case of molecular diffusion. In reality 
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equation (31) holds on the assumption of the 
existence of a diffusional boundary layer for a 
quasi-stationary mass transfer mechanism, i.e. 
in the case when for the time of relaxation of 
the boundary layer the relative driving force 
(C,, - C,)/(C, - C,,) changes slightly. Assume 
this condition. The concentration change inside 
the drop is found from the solution of the 
differential equation 

dc, 3 
- = EW,q - ~1) 
dt 

at the initial condition c1 = co1 at t = 0. The 
solution is of the form 

C 
e9 - Cl 3k,t 

C 
e9 - Co1 = exp --x- 

Consequently, the time for the relative driving 
force to decrease e times t, = R/3k, or 
z, = 2/3Sh,. 

By substituting into expression for r, the value 
of Sh,, from (31) gives 

z 
e 

= JCW + X)1 
3J(PeJ 

The process is nonsteady at z, $ r,. Since 
z, 1: 4/Pe then the quasi-stationary condition 
may be written in the form 

J(Pel) g &3x(:: X)] . 

which always holds at large Pe. 
Thus, on the assumption of a diffusional 

boundary layer inside the drop (if such a layer 
existed) equation (31) would hold at large Pe 
for any z > 4/Pe, rather than for a finite range 
of numbers z, c z < rd, as considered by the 
authors of [7, 81. 

COMPARISON WITH EXPERIMENTAL DATA 

As was pointed out in the Introduction, a 
review of the works on mass transfer to moving 
drops published before 1965 (including experi- 
mental ones) is given in monograph [I]. 
Recently a number of new works have been 

published which include the comparison of the 
predicted data with experimental ones. 

Zheleznyak and Brounshtein [5, 22, 231 
after extraction from single drops in five systems 
with the ratio of the viscosities of disperse 
and solid phases 0 < X < 2 and Reynolds 
numbers 15 < Re < 650, established that for 
drops d = l-3 mm at Re < 200 the deviation 
between the experimental data and those pre- 
dicted by Kronig and Brink do not exceed 
10-12 per cent. At Re > 200 the deviation is 
much greater. Thus for example, at 200 < Re < 
500 the relative deviation (predicted to experi- 
mental mass transfer coefficient ratio) ranges 
from 0.85 to 0.45. Similar results were obtained 
when treating the experimental data on extrac- 
tion of propionic acid from aqueous solution 
with benzene by Smimov and Kuznetzov 
[24, 251. The results of the comparison of 
experimental data of [22,23] with the predicted 
ones by Kronig and Brink are presented in 
Fig. 9. Comprehensive experimental material 
was obtained for the extraction of acetic acid 
from aqueous solutions with different concentra- 
tions of ethyl acetate [26]. These experiments 
are in good agreement with Kronig and Brink’s 
calculations. 

Skelland and Wellek [9] carried out experi- 
ments with four binary systems with resistance 
in the disperse phase only and Reynolds num- 
bers 37 < Re 6 546. The ratio between vis- 
cosities of disperse and continuous phases for 
three systems was X N 2 and for one X 2: 12. 
All the experimental data have been correlated 
for all the systems within the above range of Re 
numbers. The experimental data have been 
compared with the data predicted by Kronig and 
Brink. In this work the scatter of the experimental 
data is very large (the roof mean square deviation 
is 46 per cent). As was shown earlier (Fig. 4) 
the equations by Kronig and Brink may be 
used for calculating the rate of mass transfer 
in the range 1 < Re < 80 if X d 2. Zheleznyak 
and Brounshtein have found that at X d 2 
the experimental data are in satisfactory agree- 
ment with those predicted by Kronig and Brink 
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I - Kronlg -I ine 

Il.-diffusmn-line 

44 I.. A 

7)-heptona-toluene-diethylene glycot (single drops) 

Woter-propionic ockd- benzens(singte drops) 

Benzene-monochloroocettc acid-benrene(sproy Cctumn) 

Amy! oicohot-phenol-doter (single drops) 

Water -acetic acid - benzene (spray column) 

Woter-acetic acid- benzene (single drops) 

Water-acetic wad-ethyl acetate(single drops) 

Water -prop~on~c acid- CCl+(s~ngle drops) 
Water -propfon~c ocld-benzene ( Kuznetzov doto) 

Ethyl acetate-onllhne-water (single drops) 

Water-proplon!c acid-toluene tsproycotumn) 

l 
. 

8 

0 I I I IIll! I I I llllli $ 

IO’ 2 34 6 6 10’ 2 3 4 6 8 10’ 2 3 4 6 6 

T x IO5 

FIG. 9. Comparison of experimental data for Shl with those predicted by equations of Kronig and 
Brink [18], I and Newman [l] II. 

l WOter (single drops) -wetic acid- benzene 
a Benzene (singie drops) -phenol-wok 
D Water (dispersed phase)-acetic acid-benzena(sproy column) 
A Water (dispersed phase) -propionic acid -benzene (spray column) 

. Xylene (single dropskoniline-water 

X Benzene (dispersed phase)- benzoic acid -water 
I Higbie theoretical curve 
II Averaged expertmental curve 

I00 r 
go- 

80- 

70 - 

60- 

50- 

40 - 

30 - 

20 - 

FIG. 10. Comparison of experimental relationship Shz against ,/Pe, with 
calculations by the Higbie equation. 
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up to Re z 200. The large discrepancy between In conclusion the authors express their 
experimental data and those predicted by acknowledgement to V. Ya. Rivkind and B. A. 
Kronig and Brink is perhaps caused by the fact Samokish under whose direction the computa- 
that in Skelland and Wellek’s paper the experi- tions have been carried out on the electronic 
mental data are correlated for rather wide digital computer M-20 at the Leningrad State 
ranges of Re numbers and viscosity ratios. University. 

LJ Chzhi-Tztuan et al. [lo], while studying 
mass transfer to single drops in n-butanol and 
isobutanol, have found that the transfer process 
is in a good agreement with the data of Kronig 
and Brink at Re = 50-60. A number of other 
works on heat transfer are known which show 
satisfactory agreement between experimental 
data and those predicted by Kronig and Brink 
[24]. Thus, according to Calderbank and 
Korchinski [2] Kronig and Brink’s formula is 
valid for Re 6 200. 

CONCLUSION 

Equations are presented for computation of 
the rate of mass transfer to a spherical drop for 
the limiting cases of the resistances present only 
in the continuous and disperse phases as well 
as for the general case of comparable phase 
resistances within the range of Reynolds num- 
bers 0 < Re 6 80. 

Kronig and Brink’s model has been used in 
developing the engineering methods for the 
calculation of spray and plate columns and 
yielded positive results [27]. 

For the case of controlling resistance in the 
continuous phase six systems have been checked 
[22, 231. The experimental data showed fine 
agreement with the values calculated by the 
Higbie equation, Sh, = 1.13 ,,/(Pe2). The com- 
parison of the experimental data with the 
theoretical curve is presented in Fig. 10. The 
averaged experimental curve II, Fig. 10 satisfies 
the equation 

The calculation of the mass transfer rate for 
the controlling resistance in the disperse phase 
using the approximation of a thin diffusional 
boundary layer is shown to be incorrect. 

It is also shown that within the range 
0 < Re < 200 and the ratio between the vis- 
cosities of disperse and continuous phases 
X < 2 the experimental data on the rate of mass 
and heat transfer for the controlling resistance in 
the disperse phase and for the case of comparable 
phase resistances are in satisfactory agreement 
with the calculated values. 
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TRANSPORT DE CHALEUR ET DE MASSE POUR L’INTERACTION DE PARTICULES 
SPHERIQUES ET DE BWLLES DE GA2 AVEC UN ECOULEMENT LIQUIDE 

RtiGL’articIe presente un compte-rendu de=s travaux pub@ depuis 1965 sur le transport de chaieur 
et de mass B une goutte spbqUque unique. L.es dorm& & I’artiele actuel sent corrklk Les cas restreints 
du transport de mass pour les histances maximales des phases continue et dispersk B 0 < Re 8 80 et le 
cas gbntrai des rbsistances de phase commensurables sent 6tudib thhoriquement. Les rbsultats des caiculs 

theoriques sont comparrts avec ies rtsultats ex@rimentaux disponibies. 

WARME- UND STOFFOBERGANG BEI DER WE~HSELWIRK~G VUN SPHb;RISCHEN 
TROPFEN UND GASBLASEN MIT EINEN ~USSIGKEITSSTRUMUNG 

Z~~rn~fa~-~r Bericht bietet einen aberblick iiber die nach 1965 ver~~n~i~ht~ Arbeiten in 
de.r W&me- und Stoffiibertragung an einzeine spharische Tropfen. Die Messergebnisse in diesem Artikel 
wurden in Korrelation gebracht. Die begrenzten Ftile dw: StolRransportes fti die maximalen Widerstande 
in feinverteiltem und in dispersem Zustand bei 0 c Re Q 80 und der allgemeine Fall entsprechender 
PhasenwiderstSnde wurden theoretisch untersucht. Die Ergebnise der theoretischen Kalkulationen wurden 

mit den verfiigbaren experimentellen Daten verglicben. 

&s&&-The paper presents a review of works on heat and mass transfer to a single spIterical drop 
published after 1965. The data of the present are correlated. The limiting cases of mass transfer for the 
resistances present in the continuous and disperse phases only at 0 e Re d 6 80 and the general case of 
comparable phase resistanca were studied theoretically. The results of theoretical calculations are com- 

pared with the experimental data available. 


